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CHAPTER FOUR. WAVES IN WATER

1 Governing equations for waves on the sea surface

In this chapter we shall model the water as an inviscid and incompressible ßuid, and

consider waves of inÞnitesimal amplitude so that the linearized approximation suffices.

Recall in the Þrst chapter that when compressibility is included the velocity potential

deÞned by u = ∇Φ is governed by the wave equation:

∇2Φ =
1

c2
∂2Φ

∂t2
(1.1)

where c =
q
dp/dρ is the speed of sound. Consider the ratio

1
c2
∂2Φ
∂t2

∇2Φ
∼ ω2/k2

c2

As will be shown later, the phase speed of the fastest wave is ω/k =
√
gh where g is the

gravitational acceleration and h the sea depth. Now h is at most 4000 m in the ocean,

and the sound speed in water is c = 1400 m/sec2, so that the ratio above is at most

40000

14002
=
1

49
¿ 1

We therefore approximate (1.1) by

∇2Φ = 0 (1.2)

Let the free surface be z = ζ(x, y, t). Then for a gently sloping free surface the

vertical velocity of the ßuid on the free surface must be equal to the vertical velocity of

the surface itself. i.e.,
∂ζ

∂t
=
∂Φ

∂z
, z = 0. (1.3)

Having to do with the velocity only, this is called the kinematic condition.
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For small amplitude motion, the linearized momentum equation reads

ρ
∂u

∂t
= −∇P − ρgez (1.4)

Now let the total pressure be split into static and dynamic parts

P = po + p (1.5)

where po is the static pressure

po = −ρgz (1.6)

which satisÞes

0 = −∇po +−ρgez (1.7)

It follows that

ρ
∂u

∂t
= ρ

∂∇Φ
∂t

= −∇p (1.8)

so that

p = −ρ∂Φ
∂t

(1.9)

which relates the dynamic pressure to the velocity potential.

Let us assume that the air above the sea surface is essentially stagnant. Because of

its very small density we ignore the dynamic effect of air and assume the air pressure to

be constant, which can be taken to be zero without loss of generality. If surface tension

is ignored, continuity of pressure requires that

p = po + p = 0, z = ζ .

to the leading order of approximation, we have, therefore

ρgζ + ρ
∂Φ

∂t
= 0, z = 0. (1.10)

Being a statement on forces, this is called the dynamic boundary condition. The two

conditions (1.3) and (1.10) can be combined to give

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0 (1.11)
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If surface tension is also included then we adopt the model where there is a thin

Þlm covering the water surface with tension T per unit length. Consider a horizontal

rectangle dxdy on the free surface. The net vertical force from four sides isÃ
T
∂ζ

∂x

¯̄̄̄
¯
x+dx

− T ∂ζ
∂x

¯̄̄̄
¯
x

!
dy +

T ∂ζ
∂y

¯̄̄̄
¯
y+dy

− T ∂ζ
∂x

¯̄̄̄
¯
y

 dx = T Ã∂2ζ
∂x2

+
∂2ζ

∂y2

!
dx dy

Continuity of vertical force on an unit area of the surface requires

po + p+ T

Ã
∂2ζ

∂x2
+
∂2ζ

∂y2

!
= 0.

Hence

−ρgζ − ρ∂Φ
∂t
+ T

Ã
∂2ζ

∂x2
+
∂2ζ

∂y2

!
= 0, z = 0. (1.12)

which can be combined with the kinematic condition (1.3) to give

∂2Φ

∂t2
+ g

∂Φ

∂z
− T
ρ

∂3Φ

∂x2∂z
= 0, z = 0 (1.13)

When viscosity is neglected, the normal ßuid velocity vanishes on the rigid seabed,

n ·∇Φ = 0 (1.14)

Let the sea bed be z = −h(x, y) then the unit normal is

n =
(hx, .hy, 1)q
1+ h2x + h

2
y

(1.15)

Hence
∂Φ

∂z
= −∂h

∂x

∂Φ

∂x
− ∂h
∂y

∂Φ

∂y
, z = −h(x, y) (1.16)

2 Progressive waves on a sea of constant depth

2.1 The velocity potential

Consider the simplest case of constant depth and sinusoidal waves with inÞnitively long

crests parallel to the y axis. The motion is in the vertical plane (x, z). Let us seek a

solution representing a wavetrain advancing along the x direction with frequency ω and

wave number k,

Φ = f(z)eikx−iωt (2.1)
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In order to satisfy (1.2), (1.13) and (1.16) we need

f 00 + k2f = 0, − h < z < 0 (2.2)

−ω2f + gf 0 + T
ρ
k2f 0 = 0, z = 0, (2.3)

f 0 = 0, z = −h (2.4)

Clearly solution to (2.2) and (2.4) is

f(z) = B cosh k(z + h)

implying

Φ = B cosh k(z + h)eikx−iωt (2.5)

In order to satisfy (2.3) we require

ω2 =

Ã
gk +

T

ρ
k3
!
tanh kh (2.6)

which is the dispersion relation between ω and k. From (1.3) we get

∂ζ

∂t
=
∂Φ

∂z

¯̄̄̄
¯
z=0

= (Bk sinh kh)eikx−iωt (2.7)

Upon integration,

ζ = Aeikx−iωt =
Bk sinh kh

−iω eikx−iωt (2.8)

where A denotes the surface wave amplitude, it follows that

B =
−iωA
k sinh kh

and

Φ =
−iωA
k sinh kh

cosh k(z + h)eikx−iωt

=
−igA
ω

Ã
1+

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx−iωt (2.9)
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2.2 The dispersion relation

Let us Þrst examine the dispersion relation (2.6), where three lengths are present : the

depth h, the wavelength λ = 2π/k, and the length λm = 2π/km with

km =

r
gρ

T
, λm =

2π

km
= 2π

s
T

gρ
(2.10)

For reference we note that on the air-water interface, T/ρ = 74 cm3/s2, g = 980 cm/s2,

so that λm = 1.73cm. The depth of oceanographic interest ranges from O(10cm) to

thousand of meters. The wavelength ranges from a few centimeters to hundreds of

meters.

Let us introduce

ω2m = 2gkm = 2g

r
gρ

T
(2.11)

then (2.6) is normalized to

ω2

ω2m
=
1

2

k

km

Ã
1+

k2

k2m

!
tanh kh (2.12)

Consider Þrst waves of length of the order of λm. For depths of oceanographic

interest, hÀ λ, or khÀ 1, tanh kh ≈ 1. Hence
ω2

ω2m
=
1

2

k

km

Ã
1+

k2

k2m

!
(2.13)

or, in dimensional form,

ω2 = gk +
Tk3

ρ
(2.14)

The phase velocity is

c =
ω

k
=

vuutg
k

Ã
1+

Tk2

gρ

!
(2.15)

DeÞning

cm =
ωm
km

(2.16)

the preceding equation takes the normalized form

c

cm
=

vuut1
2

Ã
km
k
+
k

km

!
(2.17)

Clearly

c ≈
s
Tk

ρ
, if k/km À 1, or λ/λm ¿ 1 (2.18)
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Figure 1: Phase speed of capillary-gravity waves in water much deeper than λm.

Thus for wavelengths much shorter than 1.7 cm, capillarity alone is important, These

are called the capillary waves. On the other hand

c ≈
r
g

k
, if k/km ¿ 1, or λ/λm ¿ 1 (2.19)

Thus for wavelength much longer than 1.73 cm, gravity alone is important; these are

called the gravity waves. Since in both limits, c becomes large, there must be a minimum

for some intermediate k. From

dc2

dk
= − g

k2
+
T

ρ
= 0

the minimum c occurs when

k =

r
gρ

T
= km, or λ = λm (2.20)

The smallest value of c is cm. For the intermediate range where both capillarity and

gravity are of comparable importance; the dispersion relation is plotted in Þgure (1).

Next we consider longer gravity waves where the depth effects are essential.

ω =
q
gk tanh kh (2.21)

For gravity waves on deep water, khÀ 1, tanh kh→ 1. Hence

ω ≈
q
gk, c ≈

r
g

k
(2.22)
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Figure 2: Phase speed of capillary-gravity waves in water of constant depth

Thus longer waves travel faster. These are also called short gravity waves. If however

the waves are very long or the depth very small so that kh¿ 1, then tanh kh ∼ kh and

ω ≈ k
q
gh, c ≈

q
gh (2.23)

Form intermediate values of kh, the phase speed decreases monotonically with increasing

kh. All long waves with kh¿ 1 travel at the same maximum speed limited by the depth,
√
gh, hence there are non-dispersive. The dispersion relation is plotted in Þgure (2).

2.3 The ßow Þeld

For arbitrary k/km and kh, the velocities and dynamic pressure are easily found from

the potential (2.9) as follows

u =
∂Φ

∂x
=
gkA

ω

Ã
1+

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx−iωt (2.24)

w =
∂Φ

∂z
=
−igkA
ω

Ã
1+

Tk2

gρ

!
sinh k(z + h)

cosh kh
eikx−iωt (2.25)

p = −ρ∂Φ
∂t
= ρgA

Ã
1+

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx−iωt (2.26)

Note that all these quantities decay monotonically in depth.

In deep water, khÀ 1,

u =
gkA

ω

Ã
1+

Tk2

gρ

!
ekzeikx−iωt (2.27)
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w =
∂Φ

∂z
=
−igkA
ω

Ã
1+

Tk2

gρ

!
ekzeikx−iωt (2.28)

p = −ρ∂Φ
∂t
= ρgA

Ã
1+

Tk2

gρ

!
ekzeikx−iωt (2.29)

All dynamical quantities diminish exponentially to zero as kz → −∞. Thus the ßuid
motion is limited to the surface layer of depth O(λ). Gravity and capillary-gravity waves

are therefore surface waves.

For pure gravity waves in shallow water, T = 0 and kh¿ 1, we get

u =
gkA

ω
eikx−iωt (2.30)

w = 0, (2.31)

p = −ρ∂Φ
∂t
= ρgAeikx−iωt = ρgζ (2.32)

Note that the horizontal velocity is uniform in depth while the vertical velocity is neg-

ligible. Thus the ßuid motion is essentially horizontal. The total pressure

P = po + p = ρg(ζ − z) (2.33)

is hydrostatic and increases linearly with depth from the free surface.

2.4 The particle orbit

In ßuid mechanics there are two ways of describing ßuid motion. In the Lagrangian

scheme, one follows the trajectory x, z of all ßuid particles as functions of time. Each

ßuid particle is identiÞed by its static or initial position xo, zo. Therefore the instan-

taneous position at time t depends parametrically on xo, zo. In the Eulerian scheme,

the ßuid motion at any instant t is described by the velocity Þeld at all Þxed positions

x, z. As the ßuid moves, the point x, z is occupied by different ßuid particles at different

times. At a particular time t, a ßuid particle originally at (xo, zo) arrives at x, z, hence

its particle velocity must coincide with the ßuid velocity there,

dx

dt
= u(x, z, t),

dz

dt
= w(x, z, t) (2.34)

Once u, w are known for all x, z, t, we can in principle integrate the above equations to

get the particle trajectory. This Euler-Lagrange problem is in general very difficult.
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In small amplitude waves, the ßuid particle oscillates about its mean or initial posi-

tion by a small distance. Integration of (2.34) is relatively easy. Let

x(xo, zo, t) = xo + x
0(xo, zo, t), andz(xo, zo, t) = zo + x

0(xo, zo, t) (2.35)

then x0 ¿ x, z0 ¿ z in general. Equation (2.34) can be approximated by

dx0

dt
= u(xo, zo, t),

dz0

dt
= w(xo, zo, t) (2.36)

From (2.24) and (2.25), we get by integration,

x0 =
gkA

−iω2
Ã
1+

Tk2

gρ

!
cosh k(zo + h)

cosh kh
eikxo−iωt

= −gkA
ω2

Ã
1+

Tk2

gρ

!
cosh k(zo + h)

cosh kh
sin(kxo − ωt) (2.37)

(2.38)

z0 =
gkA

ω2

Ã
1+

Tk2

gρ

!
sinh k(zo + h)

cosh kh
eikxo−iωt

=
gkA

ω2

Ã
1+

Tk2

gρ

!
sinh k(zo + h)

cosh kh
cos(kxo − ωt) (2.39)

(2.40)

Letting  a

b

 = gkA

ω2 cosh kh

Ã
1+

Tk2

gρ

! cosh k(zo + h)

sinh k(zo + h)

 (2.41)

we get
x02

a2
+
z02

b2
= 1 (2.42)

The particle trajectory at any depth is an ellipse. Both horizontal (major) and vertical

(minor) axes of the ellipse decrease monotonically in depth. The minor axis diminishes

to zero at the seabed, hence the ellipse collapses to a horizontal line segment. In deep

water, the major and minor axes are equal

a = b =
gkA

ω2

Ã
1+

Tk2

gρ

!
ekzo , (2.43)

therefore the orbits are circles with the radius diminishing exponentially with depth.
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Also we can rewrite the trajectory as

x0 =
gkA

ω2

Ã
1+

Tk2

gρ

!
cosh k(zo + h)

cosh kh
sin(ωt− kxo) (2.44)

z0 =
gkA

ω2

Ã
1+

Tk2

gρ

!
sinh k(zo + h)

cosh kh
sin(ωt− kxo − π

2
) (2.45)

When ωt − kxo = 0, x0 = 0 and z0 = b. A quarter period later, ωt − ko = π/2, x0 = a
and z0 = 0. Hence as time passes, the particle traces the elliptical orbit in the clockwise

direction.

2.5 Energy and Energy transport

Beneath a unit length of the free surface, the time-averaged kinetic energy density is

Ēk =
ρ

2

Z 0

−h
dz
³
u2 + w2

´
(2.46)

whereas the instantaneous potential energy density is

Ep =
1

2
ρgζ2 + T

(ds− dx)
dx

=
1

2
ρgζ2 + T

µq
1+ ζ2x − 1

¶
=
1

2
ρgζ2 + Tζ2x (2.47)

Hence the time-average is

Ēp =
1

2
ρgζ2 +

T

2
ζ2x (2.48)

Let us rewrite (2.24) and (2.25) in (2.48):

u = <
(
gkA

ω

Ã
1+

Tk2

gρ

!
cosh k(z + h)

cosh kh
eikx

)
e−iωt (2.49)

w = <
(−igkA

ω

Ã
1+

Tk2

gρ

!
sinh k(z + h)

cosh kh
eikx

)
e−iωt (2.50)

Then

Ēk =
ρ

4

Ã
gkA

ω

!2 Ã
1+

Tk2

gρ

!2
1

cosh2 kh

Z 0

−h
dz
h
cosh2 k(z + h) + sinh2 k(z + h)

i

=
ρ

4

Ã
gkA

ω

!2 Ã
1+

Tk2

gρ

!2
sinh 2kh

2k cosh2 kh
=
ρ

4

Ã
gkA

ω

!2 Ã
1+

Tk2

gρ

!2
sinh kh

k cosh kh

=
ρgA2

4

Ã
1+

Tk2

gρ

!2
gk tanh kh

ω2
=
ρgA2

4

Ã
1+

Tk2

gρ

!
(2.51)
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after using the dispersion relation. On the other hand,

Ēp =
ρgA2

4

Ã
1+

Tk2

ρg

!
(2.52)

Hence the total energy density is

Ē = Ēk + Ēp =
ρgA2

2

Ã
1+

Tk2

ρg

!
=
ρgA2

2

Ã
1+

k2

k2m

!
=
ρgA2

2

Ã
1+

λ2m
λ2

!
(2.53)

Note that the total energy is equally divided between kinetic and potential energies; this

is called the equipartition of energy.

We leave it as an exercise to show that the power ßux (rate of energy ßux) across a

station x is

dĒ

dt
=
Z 0

−h
pu dz − Tζxζt = −ρ

Z 0

−h
ΦtΦx dz − T ζxζt = Ēcg (2.54)

where cg is the speed of energy transport , or the group velocity

cg =
dω

dk
=
c

2


k2m
k2
+ 3

k2m
k2
+ 1

+
2kh

sinh 2kh

 = c

2


λ2

λ2m
+ 3

λ2

λ2m
+ 1

+
2kh

sinh 2kh

 (2.55)

For pure gravity waves, k/km ¿ 1 so that

cg =
c

2

Ã
1+

2kh

sinh 2kh

!
(2.56)

where the phase velocity is

c =

r
g

k
tanh kh (2.57)

In very deep water khÀ 1, we have

cg =
c

2
=
1

2

r
g

k
(2.58)

The shorter the waves the smaller the phase and group velocities. In shallow water

kh¿ 1,

cg = c =
q
gh (2.59)

Long waves are the fastest and no longer dispersive.

For capillary-gravity waves with khÀ 1, we have

cg =
c

2


k2m
k2
+ 3

k2m
k2
+ 1

 = c

2


λ2

λ2m
+ 3

λ2

λ2m
+ 1

 , km =
2π

λm

r
ρg

T
(2.60)
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where

c =

s
g

k
+
Tk3

ρ
(2.61)

Note that cg = c when k = km, and

cg
>
< c, if k

>
< km (2.62)

In the limit of pure capillary waves of k À km, cg = 3c/2. For pure gravity waves

cg = c/2 as in (2.58).

3 Wave resistance of a two-dimensional obstacle

Ref: Lecture notes on Surface Wave Hydrodynamics Theodore T.Y. WU, Calif. Inst.Tech.

As an application of the information gathered so far, let us examine the wave resis-

tance on a two dimensional body steadily advancing parallel to the free surface. Let the

body speed be U from right to left and the sea depth be constant.

Due to two-dimensionality, waves generated must have crests parallel to the axis of

the body (y axis). After the steady state is reached, waves that keep up with the ship

must have the phase velocity equal to the body speed. In the coordinate system Þxed

on the body, the waves are stationary. Consider Þrst capillary -gravity waves in deep

water λ∗ = λ/λm = O(1) and kh À 1. Equating U = c we get from the normalized

dispersion relation

U2∗ = c
2
∗ =

1

2

µ
λ∗ +

1

λ∗

¶
(3.1)

where U∗ ≡ U/cm. Hence

λ2∗ − 2c2∗λ∗ + 1 = 0 = (λ∗ − λ∗1)(λ∗ − λ∗2)

which can be solved to give  λ∗1
λ∗2

 = c2∗ ± ³
c4∗ − 1

´1/2
(3.2)

and

λ∗1 =
1

λ∗2
(3.3)
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Thus, as long as c∗ = U∗ > 1 two wave trains are present: the longer gravity wave

with length λ∗1, and the shorter capillary wave with length λ∗2. Since cg1 < c = U and

cg2 > c = U , and energy must be sent from the body, the longer gravity waves must

follow, while the shorter capillary waves stay ahead of, the body.

Balancing the power supply by the body and the power ßux in both wave trains, we

get

Rc = (c− cg1)Ē1 + (cg2 − c)Ē2 (3.4)

Recalling that
cg
c
=
1

2

λ2∗ + 3
λ2∗ + 1

we Þnd,

1− cg
c
= 1− 1

2

Ã
1+

2

λ2∗ + 1

!
=
1

2
− 1/λ∗
λ∗ + 1/λ∗

=
1

2
− 1/λ∗
2c2

For the longer wave we replace cg/c by cg∗1/c∗ and λ∗ by λ∗1 in the preceding

equation, and use (3.2), yielding

1− cg∗1
c∗

=
³
1− c−4∗

´1/2
(3.5)

Similarly we can show that

cg∗2
c∗

− 1 =
³
1− c−4∗

´1/2
= 1− cg∗1

c∗
(3.6)

Since

Ē1 =
ρgA21
2

Ã
1+

1

λ∗21

!
=
ρgA21
2

1

λ∗1

Ã
λ∗1 +

1

λ∗1

!
= ρgA21λ∗2c

2
∗, (3.7)

we get Þnally

R =
1

2
ρg
³
λ∗2A

2
1 + λ∗1A

2
2

´
(c4∗ − 1)1/2 =

1

2
ρg
³
λ∗2A

2
1 + λ∗1A

2
2

´
(U4∗ − 1)1/2 (3.8)

Note that when U∗ = 1, the two waves become the same; no power input from the body

is needed to maintain the single inÞnite train of waves; the wave resistance vanishes.

When U∗ < 1, no waves are generated; the disturbance is purely local and there is

also no wave resistance. To get the magnitude of R one must solve the boundary value

problem for the wave amplitudes A1, A2 which are affected by the size (relative to the

wavelengths), shape and depth of submergence.
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Figure 3: Dependence of wave resistance on speed for pure gravity waves

When the speed is sufficiently high, pure gravity waves are generated behind the

body. Power balance then requires that

R =
µ
1− cg

U

¶
Ē =

ρgA2

2

Ã
1

2
− kh

sinh 2kh

!
(3.9)

The wavelength generated by the moving body is given implicitly by

U√
gh
=

Ã
tanh kh

kh

!1/2
(3.10)

When U ≈ √
gh the waves generated are very long, kh ¿ 1, cg → c =

√
gh, and the

wave resistance drops to zero. When U ¿ √
gh, the waves are very short, khÀ 1,

R ≈ ρgA2

4
(3.11)

For intermediate speeds the dependence of wave resistance on speed is plotted in Þgure

(3).

4 Narrow-banded dispersive waves in general

In this section let us discuss the superposition of progressive sinusoidal waves with the

amplitudes spread over a narrow spectrum of wave numbers

ζ(x, t) =
Z ∞

0
|A(k)| cos(kx− ωt− θA)dk = <

Z ∞

0
A(k)eikx−iωtdk (4.1)
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whereA(k) is complex denotes the dimensionless amplitude spectrum of dimension

(length)2. The component waves are dispersive with a general nonlinear relation ω(k).

Let A(k) be different from zero only within a narrow band of wave numbers centered at
ko. Thus the integrand is of signiÞcance only in a small neighborhood of ko. We then

approximate the integral by expanding for small ∆k = k − ko and denote ωo = ω(ko),
ω0o = ω

0(ko), and ω00o = ω
00(ko),

ζ = <
½
eikox−iωot

Z ∞

0
A(k) ei∆kx−i(ω−ωo)tdk

¾
= <

½
eikox−iωot

Z ∞

0
dkA(k) exp

∙
i∆kx− i

µ
ω0o∆k +

1

2
ω00o (∆k)

2
¶
t+ · · ·

¸¾
= <

n
A(x, t)eikox−iωot

o
(4.2)

where

A(x, t) =
Z ∞

0
dkA(k) exp

∙
i∆kx− i

µ
ω0o∆k +

1

2
ω00o (∆k)

2
¶
t+ · · ·

¸
(4.3)

Although the integration is formally extends from 0 to ∞, the effective range is only
from ko − (∆k)m to ko + (∆k)m, i,.e., the total range is O((∆k)m), where (∆k)m is the
bandwidth. Thus the total wave is almost a sinusoidal wavetrain with frequency ωo and

wave number ko, and amplitude A(x, t) whose local value is slowly varying in space and

time. A(x, t) is also called the envelope. How slow is its variation?

If we ignore terms of (∆k)2 in the integrand, (4.3) reduces to

A(x, t) =
Z ∞

0
dkA(k) exp [i∆k(x− ω0ot)] (4.4)

Clearly A = A(x − ω0ot). Thus the envelope itself is a wave traveling at the speed ω0o.
This speed is called the group velocity,

cg(ko) =
dω

dk

¯̄̄̄
¯
ko

(4.5)

Note that the characteristic length and time scales are (∆km)
−1 and (ω0o∆km)

−1 respec-

tively, therefore much longer than those of the component waves : k−1o and ω−1o . In other

words, (4.3) is adequate for the slow variation of Ae in the spatial range of ∆km x = O(1)

and the time range of ω0o∆km t = O(1).

As a speciÞc example we let the amplitude spectrum be a real constant within the

narrow band of ko − κ, ko + κ,

ζ = A
Z ko+κ

ko−κ
eikx−iω(k)tdk, κ¿ ko (4.6)
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A

gx-c t
π/κ

Figure 4: Envelope of waves with a rectangular band of wavenumbers

then

ζ = koAeikox−iωot
Z κ

−κ
dξeikoξ(x−cgt) + · · ·

=
2A sinκ(x− cgt)

x− cgt eikox−iωot = Aeikox−iωot (4.7)

where ξ = k − ko/ko and
A =

2A sinκ(x− cgt)
(x− cgt) (4.8)

as plotted in Þgure (4).

By differentiation, it can be veriÞed that

∂A

∂t
+ cg

∂A

∂x
= 0, (4.9)

Multiplying (4.9) by A∗,

A∗
∂A

∂t
+ cgA

∗∂A
∂x

= 0,

and adding the result to its complex conjugate,

A
∂A∗

∂t
+ cgA

∂A∗

∂x
= 0,

we get
∂|A|2
∂t

+ cg
∂|A|2
∂x

= 0 (4.10)
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We have seen that for a monochromatic wave train the energy density is proportional

to |A|2. Thus the time rate of change of the local energy density is balanced by the net
ßux of energy by the group velocity.

Now let us examine the more accurate approximation (4.3). By straightforward

differentiation, we Þnd

∂A

∂t
=

Z ∞

0

"
−iω0(ko)∆k − iω

00(ko)
2

(∆k)2
#
A(k)eiSdk

∂A

∂x
=

Z ∞

0
(i∆k)A(k)eiSdk

∂2A

∂x2
=

Z ∞

0

³
−(∆k)2

´
A(k)eiSdk

where

S = ∆k x− ω0o∆k t−
1

2
ω00o (∆k)

2 t (4.11)

is the phase function. It can be easily veriÞed that

∂A

∂t
+ ω0o

∂A

∂x
=
iω00o
2

∂2A

∂x2
(4.12)

By keeping the quadratic term in the expansion, (4.12) is now valid for a larger spatial

range of (∆k)2x = O(1). In the coordinate system moving at the group velocity, ξ =

x− cgt, τ = t, we easily Þnd
∂A(ξ, τ)

∂t
=
∂A

∂τ
− cg ∂A

∂ξ
,

∂A(ξ, τ )

∂x
=
∂A

∂x

so that (4.12) simpliÞes to the Schrödinger equation:

∂A

∂τ
=
iω00o
2

∂2A

∂ξ2
(4.13)

By manipulations similar to those leading to (4.10), we get

∂|A|2
∂τ

=
iω00o
2

∂

∂ξ

Ã
A∗
∂A

∂ξ
− A∂A

∗

∂ξ

!
(4.14)

Thus the local energy density is not conserved over a long distance of propagation.

Higher order effects of dispersion redistribute energy to other parts of the envelope.

For either a wave packet whose envelope has a Þnite length ( A(±∞) = 0), or for a

periodically modulated envelope (A(x) = A(x+ L)), we can integrate (4.14) to give

∂

∂τ

Z
|A|2dξ = 0 (4.15)

where the integration extends over the entire wave packet or the group period. Thus

the total energy in the entire wave packet or in a group period is conserved.
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5 Radiation of surface waves forced by an oscillating

pressure

We demonstrate the reasoning which is typical in many similar radiation problems.

The governing equations are

∇2φ = φxx + φyy = 0, −∞ < z < 0. (5.1)

with the kinematic boundary condition

φz = ζt, z = 0 (5.2)

and the dynamic boundary condition

pa
ρ
+ φt + gζ = 0 (5.3)

where pa is the prescribed air pressure. Eliminating the free surface displacement we

get

φtt + gφz = −(pa)t
ρ
, z = 0. (5.4)

Let us consider only sinusoidal time dependence:

pa = P (x)e
−iωt (5.5)

and assume

φ(x, z, t) = Φ(x, z)e−iωt, ζ(x, t) = η(x)e−iωt (5.6)

then the governing equations become

∇2Φ = Φxx + Φyy = 0, −∞ < z < 0. (5.7)

Φz = −iωη, z = 0 (5.8)

and

Φz − ω
2

g
Φ =

iω

ρg
P (x), z = 0. (5.9)

DeÞne the Fourier transform and its inverse by

f̄(α) =
Z ∞

−∞
dx f(x), f(x) =

1

2π

Z ∞

−∞
dα f̄(α), (5.10)
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We then get the transforms of (5.1) and (5.4)

Φ̄zz − α2Φ̄ = 0, z < 0 (5.11)

subject to

Φ̄z − ω
2

g
Φ̄ =

iω

ρg
P̄ , z = 0. (5.12)

The solution Þnite at z ∼ −∞ for all α is

Φ̄ = Ae|α|z

To satisfy the free surface condition

|α|A− ω
2

g
A =

iωP̄

ρg

hence

A =
iωP̄
ρg

|α|− ω2/g
or

Φ =
1

2π

Z ∞

−∞
dαeiαxe|α|z

iωP̄
ρg

|α|− ω2/g
=
iω

ρg

1

2π

Z ∞

−∞
dαeiαxe|α|z

Z ∞

−∞
dx0 e−iαx

0
P (x0)

1

|α|− ω2/g ,

=
iω

ρg

Z ∞

−∞
dx0 P (x0)

1

2π

Z ∞

−∞
dα eiα(x−x

0)e|α|z
1

|α|− ω2/g (5.13)

Let

k =
ω2

g
(5.14)

we can rewrite (5.13) as

Φ =
iω

ρg

Z ∞

−∞
dx0 P (x0)

1

π

Z ∞

0
dα eαz

cos(α(x− x0))
α− k (5.15)

The Þnal formal solution is

φ =
iω

ρg
e−iωt

Z ∞

−∞
dx0 P (x0)

1

π

Z ∞

0
dα eαz

cos(α(x− x0))
α− k (5.16)

If we chose

P (x0) = Poδ(x0) (5.17)
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then

Φ→ G(x, z) = iωPo
ρg

1

π

Z ∞

0
dα eαz

cos(αx)

α− k (5.18)

is clearly the response to a concentrated surface pressure and the response to a pressure

distribution (5.16) can be written as a superposition of concentrated loads over the free

surface,

φ =
Z ∞

−∞
dx0 P (x0)G(x− x0, z). (5.19)

where

G(x, z, t) =
iωPo
ρg

e−iωt
1

π

Z ∞

0
dα eαz

cos(αx)

α− k (5.20)

In these results, e.g., (5.20), the Fourier integral is so far undeÞned since the integrand

has a real pole at α = k which is on the path of integration. To make it mathematically

deÞned we can chose the principal value, deform the contour from below or from above

the pole as shown in Þgure (5). This indeÞniteness is due to the assumption of quasi

Figure 5: Possible paths of integration

steady state where the inßuence of the initial condition is no longer traceable. We must

now impose the radiation condition that waves must be outgoing as x → ∞. This
condition can only be satisÞed if we deform the contour from below. Denoting this

contour by Γ, we now manipulate the integral to exhibit the behavior at inÞnity, and to

verify the choice of path. For simplicity we focus attention on G. Due to symmetry, it
suffices to consider x > 0. Rewriting,

G(x, z, t) =
iωPo
ρg

e−iωt
1

2π
(I1 + I2)

=
iωPo
ρg

e−iωt
1

2π

Z
Γ
dα eαz

"
eiαx

α− k +
e−iαx

α− k
#

(5.21)

Consider the Þrst integral in (5.21). In order that the Þrst integral converges for

large |α|, we close the contour by a large circular arc in the upper half plane, as shown
in Þgure (6), where =α > 0 along the arc. The term

eiαx = ei<αxe−=αx
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Figure 6: Closed contour in the upper half plane

Figure 7: Closed contour in the lower half plane

is exponentially small for positive x. Similarly, for the second integral we must chose

the contour by a large circular arc in the lower half plane as shown in Þgure (7).

Back to the Þrst integral in (5.21)

I1 =
Z
Γ
dα
eiαxeαz

α− k (5.22)

The contour integral isI
dα
eiαxeαz

α− k =
Z
Γ
dα
eiαxeαz

α− k +
Z
C
dα
eiαxeαz

α− k +
Z 0

i∞
dα
eiαxeαz

α− k
= I1 + 0 +

Z 0

i∞
dα
eiαxeαz

α− k
The contribution by the circular arc C vanishes by Jordan�s lemma. The left hand side

is

LHS = 2πieikxekz (5.23)

by Cauchy�s residue theorem. By the change of variable α = iβ, the right hand side

becomes

RHS = I1 + i
Z 0

∞
dβ
e−βxeiβz

iβ − k
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Hence

I1 = 2πie
ikxekz + i

Z ∞

0
dβ
e−βxeiβz

iβ − k (5.24)

Now consider I2

I2 =
Z
Γ
dα
e−iαxeαz

α− k (5.25)

and the contour integral along the contour closed in the lower half plane,

−
I
dα
e−iαxeαz

α− k = I2 + 0 +
Z ∞

0
dα
e−iαxeαz

α− k
Again no contribution comes from the circular arc C. Now the pole is outside the

contour hence LHS = 0. Let α = −iβ in the last integral we get

I2 = −i
Z ∞

0
dβ
e−βxe−iβy

−iβ − k (5.26)

Adding the results (5.24) and (5.26).,

I1 + I2 = 2πie
ikxekz +

Z ∞

0
dβ

Ã
ie−βxeiβz

iβ − k − ie
−βxe−iβz

−iβ − k
!

= 2πieikxekz + 2
Z ∞

0
dβ

e−βx

β2 + k2
(β cosβy + k sin βy) (5.27)

Finally, the total potential is

G(x, z, t) = − ω
ρg
e−iωt

µ
1

2πi
(I1 + I2)

¶
e−iωt

= − ω
ρg
e−iωt

(
eikxekz +

1

π

Z ∞

0
dβ

e−βx

β2 + k2
(β cosβy + k sin βy)

)
(5.28)

The Þrst term gives an outgoing waves. For a concentrated load with amplitude

Po, the displacement amplitude is Po/ρg. The integral above represent local effects

important only near the applied pressure. If the concentrated load is at x = x0, one

simply replaces x by x− x0 everywhere.

6 The Kelvin pattern of ship wave

The action of the ship�s propeller

Has a thrust pattern

To which the ship reacts by moving forward,
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Which also results secondarily,

In the ship�s bow elevated waves,

And its depressed transverse stern wave,

Which wave disturbances of the water

Are separate from the propeller�s thrust waves.

�R.Buckminster Fuller, Intuition- Metaphysical Mosaic. 1972.

−−−−−−−−−−−−−−−

Anyone ßying over a moving ship must be intrigued by the beautiful pattern in the

ship�s wake. The theory behind it was Þrst completed by Lord Kelvin, who invented

the method of stationary phase for the task. Here we shall give a physical/geometrical

derivation of the key results (lecture notes by T. Y. Wu, Caltech).

Consider Þrst two coordinate systems. The Þrst r = (x, y, z) moves with ship at the

uniform horizontal velocity U. The second r0 = (x0, y0, z) is Þxed on earth so that water

is stationary while the ship passes by at the velocity U. The two systems are related by

the Galilean transformation,

r0 = r+Ut (6.29)

A train of simple harmonic progressive wave

ζ = <{A exp[i(k · r0 − ωt)]} (6.30)

in the moving coordinates should be expressed as

ζ = <{A exp[ik · (r−Ut)− iωt]} = <{A exp[ik · r− i(ω − k.U)t]}
= <{A exp[ik · r− iσt]} (6.31)

in the stationary coordinates. Therefore the apparent frequency in the moving coordi-

nates is

σ = ω − k ·U (6.32)

The last result is essentially the famous Doppler�s effect. To a stationary observer, the

whistle from an approaching train has an increasingly high pitch, while that from a

leaving train has a decreasing pitch.
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Figure 8: Waves radiated from disturbed ßuid parcel

If a ship moves in very deep water at the constant speed −U in stationary water,

then relative to the ship, water appears to be washed downstream at the velocity U.

A stationary wave pattern is formed in the wake. Once disturbed by the passing ship,

a ßuid parcel on the ship�s path radiates waves in all directions and at all frequencies.

Wave of frequency ω spreads out radially at the phase speed of c = g/ω according to

the dispersion relation. Only those parts of the waves that are stationary relative to the

ship will form the ship wake, and they must satisfy the condition

σ = 0, (6.33)

i.e.,

ω = k ·U, or c = ω

k
=
k

k
·U (6.34)

Referring to Þgure 8, let O, (x = 0) represents the point ship in the ship-bound

coordinates. The current is in the positive x direction. Any point x1 is occupied by

a ßuid parcel Q1 which was disturbed directly by the passing ship at time t1 = x1/U

earlier. This disurbed parcel radiates waves of all frequencies radially. The phase of

wave at the frequency ω reaches the circle of radius ct1 where c=g/ω by the deep water

dispersion relation. Along the entire circle however only the point that satisÞes (6.34)

can contribute to the stationary wave pattern, as marked by P . Since OQ1 = x1 = Ut1,

Q1P = ct1 and OP = Ut1 · k/k, where k is in thedirectin of ~Q1P . It follows that

4OPQ1 is a right triangle, and P lies on a semi circle with diameter OQ1. Accounting
for the radiated waves of all frequencies, hence all c, every point on the semi circle

can be a part of the stationary wave phase formed by signals emitted from Q1. Now

this argument must be rectiÞed because wave energy only travels at the group velocity
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Figure 9: Wedge angle of the ship wake

which is just half of the phase velocity in deep water. Therefore stationary crests due

to signals from Q1 can only lie on the semi-circle with the diameter O1Q1 = OQ1/2.

Thus P1 instead of P is one of the points forming a stationary crest in the ship�s wake,

as shown in Þgure 8.

Any other ßuid parcel Q2 at x2 must have been disturbed by the passing ship at time

t2 = x2/U earlier. Its radiated signals contribute to the stationary wave pattern only

along the semi circle with diameter O2Q2 = OQ2/2. Combining the effects of all ßuid

parcels along the +x axis, stationary wave pattern must be conÞned inside the wedge

which envelopes all these semi circles. The half apex angle βo of the wedge, which deÞnes

the wake, is given by

sin βo =
Ut/4

3Ut/4
= 1/3, (6.35)

hence βo = sin
−1 1/3 = 19.5◦, see Þgure 9.

Now any point P inside the wedge is on two semicircles tangent to the boundary

of the wedge, i.e., there are two segments of the wave crests intersecting at P : one

perpendicular to PQ1 and one to PQ2, as shown in Þgure 9.

Another way of picturing this is to examine an interior ray from the ship. Draw a

semi circle with the diameter O0Q = OQ/2, then at the two intersections P1 and P2

with the ray are the two segments of the stationary wave crests. In other words, signals

originated from Q contribute to the stationary wave pattern only at the two points P1

and P2, as shown in Þgure 10. Point Q can be called the point of dependence for points

P1 and P2 on the crests.

For any interior point P there is a graphical way of Þnding the two points of depen-

dence Q1 and Q2. Referring to Þgure 10, 4O0QP1 and4O0QP2 are both right triangles.
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Figure 10: Geometrical relation to Þnd Points of dependence

Figure 11: Points of dependence

Draw O1M1 k QP1 and O2M2 k QP2 where M1 andM2 lie on the ray inclined at the an-

gle β. it is clear that OM1 = OP1/2 and OM2 = OP2/2, and 4M1O
0P1 and 4M2O

0P2

are both right triangles. Hence O0 lies on two semi circles with diameters M1P1 and

M2P2.

We now reverse the process, as shown in Þgure 11. For any point P on an interior

ray, let us mark the mid point M of OP and draw a semi circle with diameter MP .

The semi circle intersects the x axis at two points S1 and S2. We then draw from P two

lines parallel to MS1 and MS2, the two points of intersection Q1 an Q2 on the x axis

are just the two points of dependence.

Let 6 PQ1O = 6 MS1O = θ1 and 6 PQ2O = 6 MS2O = θ2. then

tan(θi + β) =
PSi
MSi

=
PSi
PQi/2

= 2 tan θi i = 1, 2.

hence

2 tan θi =
tan θi + tan β

1− tan θi tan β
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Figure 12: Diverging and transverse waves in a ship wake

which is a quadratic equation for θi, with two solutions: tan θ1

tan θ2

 = 1±
q
1− 8 tan2 β
4 tanβ

(6.36)

They are real and distinct if

1− 8 tan2 β > 0 (6.37)

These two angles deÞne the local stationary wave crests crossing P , and they must

be perpendicular to PQ1 and PQ2. There are no solutions if 1 − 8 tan2 β < 0, which

corresponds to sinβ > 1/3 or β > 19.5◦, i.e., outside the wake. At the boundary of the

wake, β = 19, 5◦ and tanβ =
q
1/8, the two angles are equal

θ1 = θ2 = tan
−1
√
2

2
= 55◦. (6.38)

By connecting these segments at all points in the wedge, one Þnds two systems of wave

crests, the diverging waves and the transverse waves, as shown in Þgure div-trans.

A beautiful photograph is shown in Figure 13

Knowing that waves are conÞned in a wedge, we can estimate the behavior of the

wave amplitude by balancing in order of magnitude work done by the wave drag R and
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Figure 13: Ships in a straight course. From Stoker, 1957.p. 280.
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the steady rate of energy ßux

RU = (Ēcg)r ∼ (|A|2cg)r (6.39)

hence

A ∼ r1/2 (6.40)

This estimate is valid throughout the wedge except near the outer boundaries, where

A ∼ r−1/3 (6.41)

by a more reÞned analysis (Stoker, 1957, or Wehausen & Laitone, 1960).

7 Basic theory for two-dimensional Internal waves

in a stratiÞed ßuid

[References]:
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Due to seasonal changes of temperature, the density of water or atmosphere can have

signiÞcant variations in the vertical direction. Variation of salt content can also lead to

density stratiÞcation. Freshwater from rivers can rest on top of the sea water. Due to

the small diffusivity, the density contrast remains for a long time.

Consider a calm and stratiÞed ßuid with a static density distribution ρo(z) which

decreases with height (z). If a ßuid parcel is moved from the level z upward to z + ζ , it

is surrounded by lighter ßuid of density ρ(z+ dz). The upward buoyancy force per unit

volume is

g(ρ(z + ζ)− ρ(z)) ≈ gdρ
dz
ζ

and is negative. Applying Newton�s law to the ßuid parcel of unit volume

ρ
d2ζ

dt2
= g

dρ

dz
ζ
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or
d2ζ

dt2
+N2ζ = 0 (7.1)

where

N =

Ã
−g
ρ

dρ

dz

!1/2
(7.2)

is called the Brunt-Väisälä frequency. This elementary consideration shows that once

a ßuid is displaced from its equilibrium position, gravity and density gradient provides

restoring force to enable oscillations. In general there must be horizontal nonunifomities,

hence waves are possible.

We start from the exact equations for an inviscid and incompressible ßuid with

variable density.

For an incompressible ßuid the density remains constant as the ßuid moves,

ρt + q ·∇ρ = 0 (7.3)

where q = (u,w) is the velocity vector in the vertical plane of (x, z). Conservation of

mass requires that

∇ · q = 0 (7.4)

The law of momentum conservation reads

ρ(qt + q ·∇q) = ∇p− ρgez (7.5)

and ez is the unit vector in the upward vertical direction.

7.1 Linearized equations

Consider small disturbances

p = p+ p0, ρ = ρ(z) + ρ0, ~q = (u0, w0) (7.6)

with

ρÀ ρ0, pÀ p0 (7.7)

and u0, v0, w0 are small. Linearizing by omitting quadratically small terms associated

with the ßuid motion, we get

ρ0t + w
0dρ
dz
= 0. (7.8)
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u0x + w
0
z = 0 (7.9)

ρu0t = −p0x (7.10)

ρw0t = −pz − p0z − gρ− gρ0 (7.11)

In the last equation the static part must be in balance

0 = −pz − gρ, (7.12)

hence

p(z) =
Z z

0
ρ̄(z)dz. (7.13)

The remaining dynamically part must satisfy

ρw0t = −p0z − gρ0 (7.14)

Upon eliminating p0 from the two momentum equations we get

dρ

dz
u0t + ρ(u

0
z − w0x)t = gρ0x (7.15)

Eliminating ρ0 from (7.8) and (7.15) we get

dρ

dz
u0tt + ρ(u

0
z − w0x)tt = gρ0xt = −g

dρ

dz
w0x (7.16)

Let us introduce the disturbance stream function ψ:

u0 = ψz, w0 = −ψx (7.17)

It follows from (7.16) that

ρ (ψxx + ψzz)tt =
dρ

dz
(gψxx − ψztt) (7.18)

by virture of Eqns. (7.8) and (7.17). Note that

N =

s
−g
ρ

dρ

dz
(7.19)

is the Brunt-Väisälä frequency. In the ocean, density gradient is usually very small (

N ∼ 5×10−3 rad/sec). Hence ρ can be approximated by a constant reference value, say,
ρ0 = ρ(0) in (7.10) and (7.14) without much error in the inertia terms. However density
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variation must be kept in the buoyancy term associated with gravity, which is the only

restoring force responsible for wave motion. This is called the Boussinesq approximation

and amounts to taking ρ to be constant in (Eq:17.1) only. With it (7.18) reduces to

(ψxx + ψzz)tt +N
2(z)ψxx = 0. (7.20)

Note that because of linearity, u0 and w0 satisfy Eqn. (7.20) also, i.e.,

(w0xx + w
0
zz)tt +N

2w0xx = 0 (7.21)

etc.

7.2 Linearized Boundary conditions on the sea surface

Dynamic boundary condition : Total pressure is equal to the atmospheric pressure

(p+ p0)z=ζ = 0. (7.22)

On the free surface z = ζ, we have

p ≈ −g
Z ζ

0
ρ(0)dz = −gρ(0)ζ

Therefore,

−ρgζ + p0 = 0, z = 0, (7.23)

implying

−ρgζxxt + p0xxt = 0, z = 0. (7.24)

Kinematic condition :

ζt = w, z = 0. (7.25)

The left-hand-side of (7.24) can be written as

−ρgζxxt = −ρg w0xx

Using 7.10, the right-hand-side of 7.24 may be written,

−pxxt = ρu0xtt = −ρw0ztt
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hence

w0ztt − gw0xx = 0, on z = 0. (7.26)

Since w0 = −ψx, ψ also satisÞes the same boundary condition

ψztt − gψxx = 0, on z = 0. (7.27)

On the seabed, z = −h(x) the normal velocity vanishes. For a horizontal bottom we

have

ψ(x,−h, t) = 0. (7.28)

8 Internal waves modes for Þnite N

Consider a horizontally propagating wave beneath the sea surface. Let

ψ = F (z) e±ikxe−iωt. (8.1)

From Eqn. (7.21),

−ω2
Ã
d2F

dz2
− k2F

!
+N2

³
−k2

´
F = 0

or,
d2F

dz2
+
N2 − ω2
ω2

k2F = 0 z < 0. (8.2)

On the (horizontal) sea bottom

F = 0 z = −h. (8.3)

From Eqn. (7.27),
dF

dz
− g k

2

ω2
F = 0 z = 0. (8.4)

Equations (8.2), (8.3) and (8.4) constitute an eigenvalue condition.

If ω2 < N2, then F is oscillatory in z within the thermocline. Away from the

thermocline, ω2 > N2, W must decay exponentially. Therefore, the thermocline is a

waveguide within which waves are trapped. Waves that have the greatest amplitude

beneath the free surface is called internal waves.
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Figure 14: Typical variation of Brunt-Väisälä frequency in the ocean. From O. M.

Phillips, 1977

Since for internal waves, ω < N while N is very small in oceans, oceanic internal

waves have very low natural frequencies. For most wavelengths of practical interests

ω2 ¿ gk so that

F ∼= 0 on z = 0. (8.5)

This is called the rigid lid approximation, which will be adopted in the following.

With the rigid-lid approximation, the solution for F is

F = A sin

Ã
k(z + h)

√
N2 − ω2
ω

!
(8.6)

where

kh

√
N2 − ω2
ω

= nπ, n = 1, 2, 3... (8.7)

This is an eigen-value condition. For a Þxed wave number k, it gives the eigen-frequencies,

ωn =
Nr

1+
³
nπ
kh

´2 (8.8)

For a given wavenumber k, this dispersion relation gives the eigen-frequency ωn. For a

given frequency ω, it gives the eigen-wavenumbers kn,

kn =
nπ

h

ω√
N2 − ω2 (8.9)
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For a simple lake with vertical banks and length L, 0 < x < L, we must impose the

conditions :

u0 = 0, hence ψ = 0, x = 0, L (8.10)

The solution is

ψ = A sin kmx exp(−iωnmt) sin
km(z + h)

q
N2 − ω2nm
ωnm

 . (8.11)

with

kmL = mπ, m = 1, 2, 3, ... (8.12)

The eigen-frequencies are:

ωnm =
Nr

1+
³
nL
mh

´2 (8.13)

9 Internal waves in a vertically unbounded ßuid

Consider N = constant, and denote by (α, β) the (x, z) components of the wave number

vector ~k Let the solution be a plane wave in the vertical plane

ψ = ψ0 e
i(αx+βz−ωt)

Then

ω2 = N2 α2

α2 + β2

or

ω = ±N α

k
(9.1)

k2 = α2 + β2 (9.2)

For a given frequency, there are two possible signs for α. Since the above relation is

also even in β, there are four possible inclinations for the wave crests and troughs with

respect to the vertical; the angle of inclination is

|θ| = cos−1 ω
N

(9.3)

For ω < N , |θ| < π/2. There is no vertically propagating internal wave. This unique
property of anisotropy has been veriÞed in dramatic experiments by Mowbray and
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Stevenson. By oscillating a long cylinder at various frequencies vertically in a strat-

iÞed ßuid, equal phase lines are only found along four beams forming �St Andrew�s

Cross�, see Þgure (??) for ω/N = 0.7, 0.9. It can be veriÞed that angles are |θ| = 45◦
for ω/N = 0.7, and |θ| = 26◦ for ω/N = 0.9, in close accordance with the condition

9.3). Comparison between measured and predicted angles is plotted in Figure (16) for

a wide range of ω/N

To under the physics better we note Þrst that the phase velocity is

~C = ± ω
k2
(α,β) (9.4)

while the group velocity components are

Cgx =
∂ω

∂α
= ±N

µ
1

k
− α

k2
α

k

¶
= ±N

k

Ã
1− α

2

k2

!
= ±N

k3
β2

Cgz =
∂ω

∂β
= ∓αβ

k3
. (9.5)

Thus

~Cg = ±N β

k2

Ã
β

k
,
−α
k

!
. (9.6)

Therefore, the group velocity is perpendicular to the phase velocity,

~Cg · ~C = 0. (9.7)

Since

~C + ~Cg = ±N
k3

³
α2 + β2, 0

´
= ±N

k2
(k, 0) (9.8)

the sum of ~C and ~Cg is a horizontal vector, as shown by any of the sketches in Figure

16. Note that when the phase velocity as an upward component, the group velocity has

a downward component, and vice versa. Now let us consider energy transport. from

(7.10) we get

−p0x = ρψzt = ρωβψoei(αx+βz−ωt)

hence the dynamic pressure is

p0 = iωρ
β

k
ψoe

i(αx+βz−ωt) (9.9)
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Figure 15: St Andrew�s Cross in a stratiÞed ßuid
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Figure 16: Comparison of measured and predicted angles of internal waves

Figure 17: Phase and group velocities
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The ßuid velocity is easily calculated

~q0 = (u0, v0) = (ψz,−ψx) = iρ(β,−α)ψoei(αx+βz−ωt) (9.10)

The averaged rate of energy transport is therefore

~E =
1

2
ρ2|ψ|2β

α
(β,α) (9.11)

which is in the same direction of the group velocity.

Now returning to the St. Andrews cross in Þgure (15). Energy must radiate outward

from the oscillating source, hence the group velocity vectors must all be outward. The

crests in the beam in the Þrst quadrant must be in the south-easterly direction. Similarly

the crests in all four beams must be outward and toward the horizontal axis. Movie

records indeed conÞrm this prediction. Within each of the four beams which have widths

comparable to the cylinder diameter, only one or two wave lengths can be seen.

10 Reßection of internal waves at boundary

For another interesting feature, consider the reßection of an internal wave from a slope.

Recall that θ = ± cos−1 ω
N
, i.e., for a Þxed frequency there are only two allowable

directions with respect to the horizon. Relative to the sloping bottom inclined at θo the

inclinations of the incident and reßected waves must be different, and are respectively

θ + θo and θ − θo, see Figure 18.
Let ξ be along, and η be normal to the slope. Since the slope must be a streamline,

ψi + ψr must vanish along η = 0 and be proportional to ei(αξ−ωt); the total stream

function must be of the form

ψi e
i(k

(i)
t ξ−ωt) + ψr ei(k

(r)
t ξ−ωt) ∝ sinβηei(αξ−ωt).

In particular the wavenumber component along the slope must be equal,

k
(i)
t = k

(r)
t = α

Therefore

k(i) cos(θ + θo) = k
(r) cos(θ − θo),
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Figure 18: Internal wave reßected by in inclined surface

which implies that

k(i) 6= k(r). (10.1)

as sketched in Figure 18. The incident wave and the reßected wave have different

wavelengths! If θ < θo, there is no reßection; refraction takes place instead.
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